Weak presentations of non-finitely generated fields

نویسندگان

چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Weak Presentations of Non-Finitely Generated Fields

Let K be a countable field. Then a weak presentation of K is an isomorphism of K onto a field whose elements are natural numbers, such that all the field operations are extendible to total recursive functions. Given a pair of two non-finitely generated countable fields contained in some overfield, we investigate under what circumstances the overfield has a weak presentation under which the give...

متن کامل

Presentations of Finitely Generated Submonoids of Finitely Generated Commutative Monoids

We give an algorithmic method for computing a presentation of any finitely generated submonoid of a finitely generated commutative monoid. We use this method also for calculating the intersection of two congruences on Np and for deciding whether or not a given finitely generated commutative monoid is t-torsion free and/or separative. The last section is devoted to the resolution of some simple ...

متن کامل

Finitely generated groups with automatic presentations

A structure is said to be computable if its domain can be represented by a set which is accepted by a Turing machine and if its relations can then be checked using Turing machines. Restricting the Turing machines in this definition to finite automata gives us a class of structures with a particularly simple computational structure; these structures are said to have automatic presentations. Give...

متن کامل

Weak Identities in Finitely Generated Groups

In this article we introduce the notion of weak identities in a group and study their properties. We show that weak identities have some similar properties to ordinary ones. We use this notion to prove that any finitely generated solvable discriminating group is abelian, which answers a question raised in [3].

متن کامل

Arithmetic Height Functions over Finitely Generated Fields

In this paper, we propose a new height function for a variety defined over a finitely generated field overQ. For this height function, we will prove Northcott’s theorem and Bogomolov’s conjecture, so that we can recover the original Raynaud’s theorem (Manin-Mumford’s conjecture). CONTENTS Introduction 1 1. Arakelov intersection theory 3 2. Arithmetically positive hermitian line bundles 6 3. Ari...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Annals of Pure and Applied Logic

سال: 1998

ISSN: 0168-0072

DOI: 10.1016/s0168-0072(97)00074-2